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In an earlier paper (Webster and Wehausen, 1962), the problem of
finding a ship of minimum total resistance with a given after body was
treated by a method rather ‘similar to that which will be used below. The
chief and most important difference in this paper lies in the computation
of the frictional resistance, or to be more precise, the surface area of
the hull. In the earlier work this was computed by an approximation which,
although apparently consistent with the thin-ship approximation in wave-

resistance theory, actually leads to divergent integrals under circumstances

in which the area is, in fact, finite. The difficulty is connected with
the fact that tiie condition for the areca approximation to be valid is that
the slopes fy and f, should be small, whereas the corresponding condi-
tion for the thin-chip wave-resistance approximation (Michell's integral)
is that f/L should be uniformly small; here the hull is represented by
y = £(x,z) and I is the length. The approximation for the area which
will be used below avoids this difficulty, but at the expense of making
the minimization computations conciderably more difficult.

A second difference from the earlier paper is that the problem
has been somewhat extended. We no longer consider only the problem with
given afterbody, but also that in which the whole ship form can be varied.
In the later case the displacehent and a profile symmetric fore and aft
are. prescribed. According to well known theorems, the resulting ship of
linimum total resistance will be symmetric fore and aft. The computing
program has also heen so written that the volumetric coefficient can be
held constant if this is desired as a side condition in the minimization.
However, this side condition is imposed only for the symmetric ship.

FORMUIATION OF THE FROBLEM

In order to make the exposition self-contained, some of the pre-

liminary analysis from the paper by Webster and Wehausen (1962} is repeated.

The notation is Lhe came except that H instead of T 1is used to denote
the draft.

Representation ol the shig

The axes will be taken as shown in Fijure 1. The variables have
been taken dimcncionlessly, lengths in the x-direction being measured by
t = 1/2 L, those in the transverse direction by b = 1/2 B , and those in
the vertical direction by H . However, one should note that for the case

of the symmetric ship the length B 1is notl necessarily the beam, but merely
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a length scale in the y-direction. The equation of the hull will be denot-
ed by y = + fo(x,z) , and that of the forebody by y = + fi(x,z) . The
volumetric coefficient is given by

1 1
1B ,H :
C." = -5 H (3)2\/;(1)( \/;dz f(X,Z) 3 (l)

The functions will be approximated by finite Fourier series. As
our fundamental set we shall take

{cos % (2m-1) n x cos(2p-1) nz|m,p = 1, 2, ... } : (2)

These form a complete set in either 0<x <1, 0<2<1 or-1<x<0,
0 <z <1 and furthermore also in -1<x<1, 0<2z<1 1if one wishes
to represent only functions symmetric fore and aft. Otherwise one must add
to (2) the set

{sin mX cOs % (2p-1) nz|m,p =1, 2, ... } ; (3)

The selected fundamental set (2), or (2) and (3), obviously has the pro-
perty that any finite sum will represent a continuous function vanishing
on the edges x =+ 1 and z =1 of the rectangle |x|<1,0<z<1,

in the (x,z)-plane. If the profile of the ship is not this rectangle,

and it will not be for the fixed afterbody selected below, one must suppose
the hull form to be completed by a piece of the (x,z)-plane. The profile
of the forebody of the symmetric ship will be supposed tu be the whole
appropriate rectangle.

In the case of the fixed afterbody two questions arise. One 1is
that the frictional resistance, i.e. the total area of the hull, will be
increased by the added deadwood. This causes, in fact, no difficulty,
for since it is fixed it will not enter into the minimization calcula-
tions for the forebody. The other is the effect of representing a
function vanishing over the deadwood area by a finite Fourier series.

This will almost inevitably result in an approximation of the afterbody
with negative ordinates in the deadwood region. This may seem a little
startling at first, but causes, in fact, no difficulty. There is, however,
a difficulty which may arise because of fixing the forebody profile to be
a rectangle. If the proper minimum forebody should be a form with a sub-
merged protruding bulb a la Inui, the remaining part of the rectangle will
again be filled with deadwood. The difficulty lies in the fact that the
frictional resistance of this area will affect its determination in the
present calculation.
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The series rcpresenting the functions fa(x,z) and £\ (x,2z)
will be taken as follows:

M P
fo(x,2) = L Z ampcos§(2m -1) nxcosz(ep- ) nz ,
=1p=1
M P (%)
fp(x,2) = £ Zb pcos§(2m-l) uxcosz(ep- ) w5 -
m=1%=1

The rocefficients ap, are determined from the form of the afterbody and
are to be considered as known. The coefficients bpp will be determined
by the minimization conditions. For the ship which is symmetric fore and
aft the two series are identical and only the second series need be
retained. There are certain conditions in the by, which can be written
down immediately. For the case of the fixed afterbody the forebody must
fit smoothly onto tre afterbody. This requires that the following equa-
tions be satisfied:

M M
Lbgy= LM, ,p=1,8 ... ,P. (5)
m=1 m=1

For future reference we note that the volumetric coefficient of
the forebody can be obtained in terms of the bmp by substituting the
series for f,,(x,z) in (1). This yields

M P m+p
(-1)
mz=:1p§1 (Zn-1) (2p-1) P °

Cy =

ool o)

Hy2
& (6)

A pu
[\V

The Wave Resistance

Michell's integral for the wave resistance will be taken in the
following dimensionless form:

R
Oy n = w = B L f[02+s]
M~ pgB2H n L 7, 4 -
i
l l L 4
H 2H
C + 15(y; i;;) =\jpdx\jrdz f(x,z) exp [- fﬁ; 722 + iyx] ,
-1 o]

where Ry denotes the wave resistance and 7, = gL/2 ug, u, being the
ship's speed.
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We now introduce the following functions:

1
Cep(7) =fcosyx cos % (2m-1) nxdx
o

- (-1)" 2(2m-1)rx cos y ’ (8)
Ly2-(2m-1)2x2

. 1
Scp(7) =fsin7x cos 3 (2m-1) mxdx

0
B Ly + (-1)3g2m-1) n siny
by2 - (an-l)2 x°

1
H 1
Ep(L—yo ’ 7) = [ exp-(2H/L7°)722 cos 3 (2p-1) nzdz

\ (2H/L7o)7‘2 + (21 l% (2p-1)x exp-(-"-H/Lro)r2

)

(28/175)%" + § (2p-1)%°

4
2 e
anpq(%ﬂo) = ;%H%[[Ccchn + ScpScy, ] EquJ;r dy ,
)

o
4

H oH oid
o o \’ -7

The quantities in (7) may now be expressed in terms of these functions as
follows:

M P M P

C+iS= X Za.mp (Cep - 1Scy] Ep ¢+ L Z‘.bq[Cc + i8¢, ) Eq ,

m=1l p=l n=1q=1

(9)
M P
= Z I {eanptnoBunpg * PmpPngPunpq * 2mpPngPmnpq}
m,n=1p,q=1
For the ship symmetric fore and aft app = bpp and

M

Cy=2 X 2 bmpbnq {Bunph * Dmnpq} (10)

m,n=1p,q=1
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It is evident from (8) that

4
o y |
2H ——
Pmnpq * Pmnpq = 217, f CcmCCnEPEqJ72-7g £ WL}

Yo

The Frictional Resistance

It will be convenient to use for a moment variables with their
proper dimensions. The viscous resistance will then be taken as the
usual "equivalent flat-plate" resistance, i.e.

1 2
Ry = 5 pu SCe(Re) 3

2
puZCy(Re) j]fl+f§+f§] dxdz ,
So

(12)

where S, 1is the area bounded by the profile of {he ship at rest, S its
wetted surface, Re 1s the Reynolds number Lu,/N and Cg¢ the resistance
coefficient.

As has been mentioned earlier, the only significant difference
between this paper and the earlier paper of Webster and Wehausen (1962)
lies in the computation of the area S . In the earlier work the integral
in (12) was approximated by

Jf (1 + % f +

an approximation which overestimates the area. 1In fact, (13) may become
infinite for hull shapes which are perfectly reasonable, for example,

t\)li—‘

£) axaz (13)

2

f(x,2) = b1 - 55) (1 - 52 .
On the other hand, the form of (13) is very convenient for the minimiza-
tion problem to be considered later, and one would consequently like to
retain some of these aspects in another approximation without the same
deficiencies. What we shall do is to assume some standard hull, say
y = + F(x,z) , and consider y = + f(x,2) as a perturbation of this.
The area of the standard hull will be assumed known.
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Let us now return to the dimensionless variables. Then (10)
may be written in a form parallel to (7):
g -
v=psB2H )
L2 i B2 2]'2

S, being now the dimensionless profile.
integral in (14) as follows:

B2 B2 2%
ff[1+§f§+mfz] dxdz

We shall approximate the

(15)
S
B2 2 32 #r o B2 ol 2 3
= k/:jr[l + ;5 F_ + Fg * = (fx F,) + 2 (fz F7)] dxdz
SO
9[ B2, B2 %dxd
3 *Ex ] "
SO
2 .7 B2
B
ff[l+_§F mF][LE(f 2) ha(f Fi)]dxdz
1 s -1
BS 2, B2.2.2 _lff B2 _B2 2.2
ff[l-rLan-rme] dxdz - 3 [1+L2F§ = Fz]
SO
2 2
B2, B2
[;5 F, + "2 F ] dxdz
2 B2
fﬁ1+—F2 —% ][21‘2 l‘,‘,1"2']&:«1‘-;.

The first two integrals, denoted by Sp and Ay , respectively, are fixed
as soon as F 1is decided upon and only the last integral will vary with
f . Again the approximation gives an overestimate of the area, and,
furthermore, difficulties with the last integral are still possible for
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f(x,z) whose behavior in the ieighborhood of the submerged part of the
profile differs too much from that of the selected function F(x,z)
Formula (15) will be the basic of an iteration procedure to be explained
later.

It is important to note that in (15) not only H/L but also
B/H must be specified as parameters. It was not necessary to fix B/H
in the formula for Cy 1in (7), nor was it necessary in the earlier work
when the approximation (13) was used.

Next we compute the part of Cy due to the forebody alone, say
Cyb » by substituting (4) in (14) ana (15). First, the area of the fore-
body is given by

2 M )3

2
+ +  n° B~ X
Sp - Ap + = v z PmpPng (16)
m,n=l p,q=1
-1
2 - 1 1
B2 B22 =, y 1 \
{(2m-1)(2n-1) [1+ EEFX + ZEEFZ] sin3(2m-1)nxsin3(2n-1)nxcos5(2p-1)nzcos(2q-1/
S 1 nzdxdz
B2 > B2,
+ ———(Ep 1)(2q- l)\qu E—Fx -—§F ] c052(2m l)nx»osz(zn l)nxsinE(Zp -1)
SZ nzsin§(2q-l)nzdxdz}
+ + g B2 ¢ Bl B
m,n p,q

where the superior plus signs indicate that the integrals are restricted
to the part of the profile spanned by the forebody. It then follows
immediately from (14) that

X mepbnq _— (17)

1 12, + &, 1
vb f F F e
o » 7o 1676 m,n p,q

For the afterbody frictional resicstance Cva one need only replace the
superior plus signs by minus signs and the b's by a's . However, the
value of Gy, will not affect the form of the minimizing forebody inas-
much as there is no interact.on between fore- and afterbody in this simple
model of frictional resistance. For the ship which is symmetric fore and
aft it is obvious that one can obtain the total frictional resistance by

doubling (17).
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Minimization of the Resistance

We now turn to the problem of minimizing the total resistance,
as approximated by Ry + Ry subject to certain side conditions. First
we note that, if L , B, and H have been fixed, %t is equivalent to
minimize Cy + Cy . The unavoidable side condition °) has already been
introduced, for the ship with the fixed afterbody. For this case it is
not in principle necessary to add any further side conditions. For the
symmetric ship we must at least add a fixed value of the volumetric
coefficient as a side condition. For both, B/H and H/L must be
fixed as parameters. However, in the second case the true beam/draft
ratio is left free to vary. A further side condition which is obviously
important but which cannot be easily included in the problem as formu-
lated below is that the ordinates should be non-negative.

If one introduces the side conditions by means of Lagrange
multipliers, the problem reduces to finding a minimum of the following
function for the case of the given afterbody:

P [ M M (18)
Cy + C +2Z‘.AIJ b -Z',am A 1
x p::l =] w m=]1 P ]

For the ship symmetric fore and aft the appropriate function is

Ts (70) H/L; bmp, U) =
HLo 2

brp- 3(x)" 2~ Cv 1 -
(18')

In (18) Cy 1is given by (9) and Cy by Cyp plus the corresponding

Cya - In (18') Cy 1is given by (10) and Cy by twice (17). In either

case Cy + Cy consists of a constant plus a quadratic expression in the

b

Cy + Cy + 2 % E ¥l
R b B p=1 (2m-1){2p-1)

mp °

A necessary condition for a minimum of Ty is fulfillment of
the following set of linear equations in the unknowns bmp » Mp 3

T . £ 2
a _ b
nq m'.'.l p:l (o} (19)
M P
+22 Drmnpq®mp * 2)‘q]= 0, DRk, ..., W §5k; 0y B)
m=1p=1

M M
2x£§1me - mglamph G, Bk, aaag P

|

——— W‘ w“h -
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The analogous equations for the minimum of Tg will not be written out,
but are, of course, similar. It is clear from the non-negativeness of
the functions Cy and Cy that a solution of (19) will, in fact, yield
a minimum of T, . However, it may (and does) happen that the minimizing
hull form has negative ordinates for certain values of the parameters.

As has been mentioned earlier, our computational procedure is not adapted
to finding a minimum with the inequality fy, > O as a side condition.

In the earlier treatment of Webster and Wehausen
(1962) the approximation for the hull area produced & matrix Smnpq
whose only non-vanishing elements were the positive main-diagonal terms
Smmpp - It 18 no longer true that all off-diagonal terms vanish, so that
one cannot make a definite statement concerning the effect upon the con-
dition of the coefficient matrix in (19) of iucluding the frictional
resistance., However, its inclusion does prevent the wild forms from
occurring which were obtained earlier when no such restraint was imposed.
On the other hand, as was mentioned earlier, its effect is not sufficient
to prevent physically unreasonable forms from developing for sufficiently
nigh Froude numbers.

The Computational Procedure

Several different numerical procedures are involved
in finding a solution to the problem formulated above, but they are for
the most part relatively straightforward. All computations irere carried
out on the IBM 7090 of the University of California Computer Center. The
coefficients Bmnpq , Dmnpq » Smnpq were computed using Simpson's rule.
The singularity at ¥ = 7o, 1in the integrals for anpq and Dmnpq was
handled in the same manner as in the preparation of Weinblum's (1954)
tables. The linear Equations (19) were solved using an already available
program. In finding the hull area an iterative procedure was used, so
that the Smnpq were computed several times for each Froude number. For
the problem in the given afterbody, the reflection of this in the midship
section was used for the initial choice of F in (15). The associated
values of Spppq were then used to find a solution to (19) and hence a
hull sha ~, say, fg) . The procedure was then repeated, using 1g; for
F in (15, to find a new hull fgo , and so forth until fg) had been
found. Since the difference between faz and fg), 1s less than 1%, and
between CV} and Cy) 1s less than 0.5%, we conclude that the computa-
tion of the area is sufficiently accurate for the purpose at hand. A
similar procedure was used for the symmetric ship except that the initial
F in (15) was taken as cos% T X cos% xn 2z . The curves for the body plans
were also produced by the computer from a special plotting program using
the Fourier coefficients bpp as input.
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The Fourier series were terminated with M = P =6 as in the
earlier paper. As a consequence there is an evident waviness in the lines.
As the results show, it would have been a wasted effort to have smoothed
out this waviness by increasing P . This was established by a numerical
experiment in which M x P was also takenas 6 x1, 6x2, 6 x4,

This will be discussed later.

THE OPTIMUM FORMS

Choice of Parameters

The following choices were made for the actual calculations. For
the problem with fixed afterbody the same afterbody was used as in the
earlier computations of Wehausen, Reichert and Gauthey (1961) and of Webster
and Wehausen (1962). Body plans are shown in Figure 2; various geometric
form coefficients follow: Cp = 0.564, Cg = 0.508, Cy = 2.75 x 1073,

Cxy = 0.90. The afterbody was designed to conform as closely as possible

to a Taylor Standard Series model of the same prismatic coefficient, but

with midship section represented by y = 1 - z8 (because in the first-cited
paper a polynomial representation was used). The following further choices
were made: H/L = 0.0437, B/H = 3, L = 400'. A specific length had to be
chosen because of the inclusion of the frictional resistance. The Schoenherr
coefficients plus a roughness allowance 0.0004 were used in computing Cg(Re);
in determining Re the viscosity of sea water at 63°F was used.

The prismatic coefficient of the afterbody was sclected as a suit-
able one for 7y, =4 (Fp = 0.354, V/LZ = 1.19). It is obvious, however,
that the afterbody shape should properly be selected for each Froude number.
This might reasonably be done by finding the optimum symmetric ship for the
given value of 1y, and then designing an afterbody to conform as closely
as possible to this while still avoiding separation and satisfying other
requirements. i

For the problem of the optimum symmetric ship only the volumetric
coefficient among tihe form parameters was fixed. For 7y, = 6 computations
vere made for Cy « 103 = 1,5, 3 and 4.5; for all other values of 7, the
value Cy * 105 = 3 was used, For the remaining geometrical parsmeters
we chose H/L = 0.05, B/H =3 and L = 40O'. We note again that for this
problem B 4s an arbitrary length scale in the transverse direction and
that an optimum value of beam/draft is found for each as a part of the
solution,

o e R A L i meed ST S~ e T
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For the symmetric ship optimum forms were found for integer
values of 7,5 TIrom 2 to 10, i.e. for Froude numbers between 0.224 and
0.5. Since the forms for 9y, =2 and 3 showed negative ordinates of
appreciable size at the load water line near the bow and stern, we
restricted the computations for the problem with given afterbody to the
interval yq = L to9 . Since 79 = 9 produced negative ordinates, we
did not carry the computation to 9y, = 10 . However, inasmuch as we
found similarly located negative ordinates for vy, = 6 but not for
Yo = 7 , this may have been unduly pessimistic.

The Symmetric S..ip

Figures 3 to 11 show section curves, waterlines and the section-
al area curve for each integer value of 7y, from 2 to 10. The figures
show also the values selected for the parameters, the values of Cy , Cy,
Cp for the optimum form as well as the geometric form parameters Cg ,

CL, ; CP and Cx . However, Cp was computed using the midship section
beam, and CP from the equation C, = Cg/Cy . Hence, for some of the
rather outré forms which have developed for 7y, = 2, 3, and 4 these coeffi-
cients have lost their conventional meanings. On Figure 15 are plotted
optimum (according to this analysis) values of B/H, Cp; Cp, and Cx as
functions of 7o ; in all cases Cy = 0.003.

For the most part the body plans and graphs speak for themselves,
but several points deserve special mention. The enormous bulbs which occur
for 75 = 2 to 5 would presumably result in a separated flow and thus
vitiate the fundamental assumptions of the present analysis. For 7y, =6
to 10 the forms are more reasonable in this respect. The size of the
bulb decreases to a minimum at 7y, = 7 and 8 and then slowly increases
again. Figure 16 shows Cr and Cy for the optimum ships plotted against
Yo - 1t is evident that for 7y, between 6 and 10 these forms are indeed
"waveless'" insofar as the contribution of wave resistance to total resis-
tance is concerned. Cy for these ships is plotted in Figure 17. We note
that the resistance coefficient R/pg¥  is related to ours by the
equation

_R
peY

o @Dk

The factor'is 0.375 for the ship forms discussed above.

The very low values of the wave resistance obtained for these
forms rajises several questions. It is often assumed that the sectional
area curve is of prime importance in determining the wave resistance, and
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that the distribution in depth is of secondary importance. A computing
experiment was made to test this and related conjectures. For Y, = b,

6, and 8 the dimension M x P of the coefficient matrix was taken first
as 6 x 1, then as 6 x 2 instead of 6 x 6 as in the other computations.

In the 6 x 1 computation all sections are affinely related (cosine curves,
in fact) and the only freedom is in the longitudinal distributicn. This
situation corresponds to that in the papers of Weinblum (e.g. 1957). In
the 6 x 2 computation there is a single degree of freedom in the vertical
direction which permits variation in vertical distributicn along the
length. The results were instructive. The frictional resistance varied
by only small amounts, less than 5%, wvhereas the wave resistance was in-
creased by factors of 2.8 to 4.2 in the 6 x 1 computations. On the other
hand, in the 6 x 2 computations the wave resistance was already within
15% of that obtained in the 6 x 6 computations. The encirclied points on
Figures 15 and 17 show results of the 6 x 1 computation. The body plans
and sectional-area curves are shown in Figures 12 to 14,

In order to test the effect of restricting the amount of freedom
in the longitudinal direction, a computation was made for Yo * L with a
4 x 4 matrix. The wave resistance of the resulting form was considerably
lower than with the 6 x 1 matrix (Cy = 0.3621 x 1072), but still not as
near the 6 x 6 value as with the 6 x 2 matrix. We conclude that longitu-
dinal distribution is, in fact, more important than the vertical providing
that at least some provision is allowed for vertical variation with longi-
tudinal position.

For 7, = 6 the effect of changing Cy was also investigated,
the optimum forms for Cy = 1.5 x 10-3 and 4.5 x 10~ being computed in
addition to 3.0 x 1075. The forms were very close to being affinely
rclated, with corresponding cordinates being nearly proportional to the
values of C. . Figure 18 shows graphically the dependence upon C.
of several quantitics.

It is noteworthy that for all speeds the waterline at the surface
is cusped, or practically so. This phenomenon obtains also for the optimum
forms with given afterbody.

The Ship with Given Afterbody

The vody plans and sectional area curves for the optimum fore-
boc.es for y = 4 to 9 are shown in Figures 19 to 2k, Figures 25 and

Wl e e
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26 are analogues to Figures 15, 16, and 17, respectively, for the symmetric
ship. There are, however, certain differences. Here B/H is fixed at 3,
but Cy - can change. Also, since Cp = CxCp = 0.9 Cp and

Cy = (B/H)(H/L)ECB = 0.00573 x Cg there is really no more information

in the Cp and Cp curves than in the Cy curve.

Possibly the most significant information lies in a comparison
of the results with those for the symmetric ship. It is evident from a
comparison of Figures 16 and 26 that the wave resistance of the optimum
ship with given afterbody is an appreciable part of the total resistance
in the region 6 < 7o < 9 whereas it was negligible for the symmetric
ship. One might feel constrainedto be a little cautious here because the
volumetric coefficient has decreased. However, inspection of Figure 18

shows that this makes the discrepancy all the more striking. One can
only conclude that, on the basis of this criterion, the afterbody is

a rather poor one for this speed range. In fact, it compares rather
poorly at all speeds with the performance of the symmetric ship.
Concluding Remarks

There is little to add to what has already been said except that
experiments appear to be the next appropriate step, at least for the symme-
tric models with 79 > 6 . For these an interesting choice confronts one,
In order to test the conclusions, should one use the designs for the 400
ship, or should one make new designs for an optimum 5' model?

Finally, wve note that it need not be considered surprising if
one should be able to make & substantial improvement upon existing ship
forms. Empirical methods of investigation operate within a limited scope
of variation. Inui has already been very successful with only a few
degrees of freedom at his disposal. With thirty-six one should be able to
do even better. On the other hand, some further restraints need to de
imposed for 7yo <5 4in order to obtain forms whose behavior will conform
to the assumed model of frictional resistance. Unfortunately this will
apparently lead to the more difficult numerical problem in which bounds on
ordinate and slope are imposed as side conditions.
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DISCUSSIONS

by S, W, W. Shor

In this paper the authors have shown how to produce three-
dimensional ship-shape forms of very low resistance. Nonetheless, there
remains a serious problem in making the results of calculations such as
theirs generally useful to practicing naval architects. This is because
a practicing naval architect must meet many requirements besides those of
low resistance, and it is most unlikely that a form derived solely to solve
the resistance problem will immediately solve the other problems too. There
is also a comminications problem, in that most practicing naval architects
are more used to dealing with drawings and tables of offsets than with the
constraints one can place on a computer calculation.

Fortunately, a suggestion made by Professor Bessho in one of the
papers he presented at this seminar can be extended in such a fashion as
to multiply greatly the usefulness of the work of the present authors. He
pointed out that if we add some multiple of a source or dipole distribution
which has almost zero wave resistance to any other distribution, we add
very little resistance. This is because small resistance implies small
|c(£) + iS(f)| in the equation

n/2 >
R=[ |c(£) + 15(£)|° cos’e do, (A)
o
where C(f) and o(f)
indicate that the functions C and S are functionals of the function f .
Since the functionals C and S are linear in f , where the hull is de-
fined by n = £(&,f), it follows that for any two such functionals f,
and f, we can write

C(a Fi+ayf,)+ 15(a Fi+a f,) = &, [C(£) )+ 18(F ) 1+ aylC(f,)+ 18(£,)]. =
B

In consequence, if we have a set of distributions which correspond to ships
of very low resistance, then a linear sum of these distributions also
corresponds to a ship which has very low resistance. That is, any combina-
tion

F=af +af5+ ...+ a, T, (c)

will certainly have low resistance provided that we do not choose a set of
coefficients 8&,,8,,...,8, which are such that |a)|+|as| + ... +[ap[>> 1,

-949-
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This last requirement is to insure that combinations of hull forms cannot
be made which exaggerate the wave-producing qualities of their components.
This might occur if small differences between large quantities were per-
mitted.

The practical application of this principle now becomes clear,

(1) the first step is to derive many functions defining hull forms
of very small wave-making resistance and tabulate them. The set of such
functions is certainly not a complete set, at least under the restrictions
placed on Equation (C), for if the set were complete every hull form could
be described in terms of the memkters of this set. Then every hull form
would be a form of low wave-making resistance. On the other hand, exper-
ience to date seems to indicate that the set is quite a large one. It may
well be that we can quickly derive enough forms so that by application of
Equation (C) we may find a hull through linear combination which will suit
almost any purpose.

(2) Using the library of forms of low resistance complied from
results such as those of the present paper, the naval architect takes linear
combinations of singularity distributions as in Equation (C) so that he
approximately meets the requirements other than resistance of his hull
design. Then he calculates the streamlines about this hull by one of the
standard methods, and sc defines the hull exactly.

(3) If the resulting hull corresponding to the distribution F
requires further correction, he does this by a repetition of the process.
However, if the corrections are small it will be possible to dispense with
the recalculation of the streamlines. That is, if we take the functional
G(F) as the set of offsets corresponding to the singularity distribution
F , then if the coefficients by,by,...,b, are small enough we can write

+bf +...4+4DbF . (D)

G(F + b,f., + b.f +...+bnfn)n--G(F)+blfl of5 U

1= 2°2

This means, also, that if a singularity distribution is available whose
corresponding streamliine pattern has been calculated and defines a hull
which nearly meets the requirements of the naval architect, he can proceed
directly with Equation (D) and omit entirely the calculation of streamlines
mathematically. The problem then reduces to cne of adding sets of offsets
together,

Since the technique descrited here permits an infinite number of
different hull forms to be derived from the calculation of a finite number
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of hull forms of low resistance, I suggest that all forms of low wave-
making resistance be compiled as they are calculated so that practical
naval architects may make use of them by methods such as are outlined
here, It seems reasonable to suppose use of such compilations, rather
than direct use of the high-speed computer, micht well become the primary
means of application by practicing naval architects of the results devel-
oped by theoreticians.

An alternate way of applying work such as that done by Lin,
Webster, and Wehausen to the calculation of practical hulls is, of course,
the method of steep descent. Any hull which can be described by the func-
tions they have used can be imprcved unless, of course, it is already an
optimum hull within that family of functions. It is sufficient to observe
in this respect that Equation (19) of their paper less the last two terms,

OTa M P 2

3 =2 & z{ic z

S + B Jjb_+D a , (E)
nq el pel f 16y, ™Pq  mnpq” mP  “mnpq mp}

n=1, veey M;q=l).°", P,

defines the gradient of the total resistance. It is only necessary to
insure that changes made in a hull by the method of steep descent are
orthogonal to the gradients of the quantities to be held constant but as
close to the negative of the gradient of the resistance as possible, 1In
consequence, nearly all the work done by the present authors could be
adapted easily to finding ways of improving hulls already designed by
conventional methcds. This might be the fastest method of obtaining appli-
cation of the theoretical work which they have done.

by Lawrence W. Ward

It is refreshing to see an optimization calculation which treats
the total resistance, that is the wave resistance plus something that
attempts to include the frictional resistance, In regard to the latter
there are two points I would like to raise. First is that the hull wetted
surface is not a direct measure of the resistance as we have the strong
possibility of separation behind sharp recesses. Perhaps a side condition
f, 2 -8 would cause avoidance of some of the more extreme bulb forms.
Then we have the idea that it is not necessary to compute the developed
surface but rather it is more proper to use the projected wetted surface:

Sp = f[ 1+ fze]l/2 dx dz

This should be easier and is consistent with the naval architects' ignor-
ing the "secant correction".

B e T
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AUTHOR'S REPLY

The authors are pleased to see Capt. Shor's two suggestions for
putting their method to use in the near future, We had regarded the
investigation as being still in a somewha: preliminary stage, as one can
see, for example, by the fact that we did not even try to smooth out our
lines in order to make them less offensive to the naval architect's eye.
However, it was the points mentioned in Capt. Shor's introductory paragraph
which actually motivated our formulation of the problem with given after-
body, for this is a simple instance of an a priori constraint, selected
for reasons having little to do with wave resistance. Capt. Shor's pro-
cedures may, however, be more flexible in use than ours, for they give the
possibility of finding an approximate answer, or a direction of improvement,
in situations where a formulation and solution of the problem by & method
like ours would be too long.

The first method has the disadvantage that it may increase the
frictional resistance even though it keeps the wave resistance constant.
The method of steep descent can apparently avoid this. Since for most
practical Froude numbers the wave resistance of our optimum forms is al-
ready much less than the frictional resistance, this may give a signifi-
cant advantage to the second method. We note that M., G. Krein (see
Kostyukov, Theory of ship waves and wave resistance, Liningrad, 1959,

p. 180) has suggested using the first method to minimize the frictional
resistance while keeping the wave resistance constant. Krein has also
given a simple construction for a large class of waveless additions:
Let m(x,z) and n(x,z) bte two functions defined on S, for which
my , N, and m, , n, exist and such that n vanishes on the boundary
of S5 ; then the hull

o ® 3. 3
£+ [LYO S;g + az] mn

has the same (Michell) wave resistance as f itself,

For the practicully important problem in which one tries to meet
a constraint like

0< f(x,z) <B , - Csfx(x,z) <D

it is not clear to us how cither method can be systematically used. We
are hopeful of applying quadratic programming techniques to this problem,
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Finally we note that Prciessor Maruo has pointed out in conver-
sation that it is more usual to take the frictional resistance as

1/2

R, = o u02 Ce(Re) [ [ [1 4+ fza] dx dz

So

instead of (12). This could, of course, be handled in the same way as (12).

——
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SCME ASPECTS OF THE
PROBLEM OF MINIMUM WAVE-RESISTANCE

l, Introduction

TRG has been ccnducting research in wave-resistance for some
time. This research is continuing and is expected to lead to practical
results in the near future. Some of our more theoretical results are
described below, in keeping with the title of this seminar.

2. Minimum Wave-Resistance for Submerged Line Dipole
Distributions Having Prescribed Linearized Volume

In the discussion following (see Ref. 1, page 117) I indicated
that this mathematical problem, a numerical treatment of which had been
discussed by Weinblum (see Ref. 1, page 112) had no solution. No
furth?g igformation was given. Since then additional work has been
done, »3) ana substantial decreases in theoretical wave-resistance
have been achieved. Nevertheless the ma?ﬂ matical problem has not
been resolved in published work. Bessho has considered the prcblem,
and correctly observes that it has no solution. He claims further that
arbitrarily small wave-resistance can be obtained and presents a method
for constructing dipole distributions having arbitrerily small wave.
resistance and fixed linearized volume. Unfortunately his analysis
does not lead to the desired conclusion. In his Equation (1.2.5)

6(x) = @& 0[‘51‘)21] (1)

(2n):

the O is uniform in x but not in N since it depends on the 850 which
are solutions of his equations (l.2.4) and hence depend on N. Hence
his conclusion following his Equation (1.2.5), "therefore G(x) can be

made arbitrarily small by making N arbitrarily large" is not warranted.
In view of the' interest in this problem displayed by the above-mentioned

authors and also by Krein (as quoted briefi, in Ref. 5) I present briefly

some results obtained by Professor Donald Newman* and myself.

*Yeshiva University, New York, New York.

=

R e = - Y
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After normalization the mathematical problem is to find f(x)
such that

/2
\/l f(x)dx = 1 (2)

-1/2
and
Lo~ b -2AFy >
c, = & f Ao % (1(w)]” ar = nminimm  (3)
] 7 J‘2
A=l
1
where yo = dimensionless submergence
F = gL/c2
c = forward speed
and 1/2
I(\xF) = J[ f(x) cos NFx dx . ()
-1/2

As is well known we can assume f(x) to be even, and we have done so.
We can also write

" 1/2 1/2
c - & J[ £(x) £(x') K(F|x-x'|) dx dx! (5)

w 7T .
-1/2 -1/2

where 2
=2\ Fyo

o
K(F|x-x'|) = J[\ ifia- : cos (NF(x-x')) dx . (6)
1l

It is clear from (3) that for this problem C, 2 0. We shall
take a few lines to prove that for this problem C,, is positive definite
(Cy = O implies f(x) = O p.p.*) since the question of positive definite-
ness is presently of some interest. If C, = O then from Equation (3)
I=0psp. for 1 < a<w, Now, if |f(x)|is integrable then I(XF) is
an entire analytic function and hence vanishes identically. This is
possible only if f£(x) = O p.p.

* P.p. means almost everywhere. See any book on Lesbesgue theory.
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It follows that a necessary and sufficient condition for
f(x) to be a solution of the minimum problem is that

1/2
f(x) = g(x)/ \/\ g(x) ax , (7)
-1/2
with
1/2
JF g(x' )K(F|x-x'| ax' = +1 for |x| <1l/a. (8)
-1/2

Note that if such a g(x) (¥ O p.p.) exists its resistance is given,
using (5) and (8), by a positive multiple of

1/2
[ et ax (9)
-1/2

wvhich is thus a positive quantity. However, if y > O and such a g(x)
exists (with |g(x)| integrable) then the integraloin (8) defines an
entire analytic function, and hencc (8) holds for all x. However, for
large x the integral tends to zero, hence the problem as posed has no
solution.

One is led then to ask what is £he greatest lower bound of C
for admissible functions f(x). We have shown that if

w

e>0 and €° < min [y,/(2F1og3), F'2] % (10)

and if (for |x| < 1/2)

n n F([2xke]2) cos 2nkx
f (x,e) = 1+ 2(-1)nt L >
n k=1 r([{2nke]“-n)r(ntk+1)r(n-k+1)

(10)

then C: (as given by (5)) tends to zero as n » », and (2) is satisfied
for all n (> 1). Of course the fj cannot converge to an admissible
function, since if they did that furction would be a solution of the
minimum problem.

s i i, E—T
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The sequence f (x,e) is not intended for use in the design of
submerged bodies, but only to help ansvwer a mathematical question about
minimum wave resistance. The problem of designing for low wave drag
has been treated in the literature, with considerable success.

If we integrate (5) by parts twice with respect to both x and
x',assume f(+1/2) = £'(+1/2) = 0 and let y - O, and continue to relate
f(x) to body shape in the usual linearizedoway, we get the slender-ship
wave resistance formula considered by Vossers, Maruo, Tuck, Ciolkowski
and others, some of whom have also discussed the associated minimum
problem.

3. Some Slender-Ship Theories of Ship Wave-Resistance

Followirg the appearance of Vosser's Thesis(6) a number of
authors have discussed slender-ship theories of ship wave resistance
and motion. A number of papers at the present Symposium deal with
this subject. We shall present here a few comments on these theories.

We can identify three slender-ship theories:
(1) NSST (Naive Slender-Ship Theory). The ship is represented by a
line distribution of (wave) singularities whose strength is as in an
infinite fluid.

(2) MSST (Michell Slender-Ship Theory). This is obtained by letting
first the beam, and the draft, tend to zero. The result is the same

as if we let firs? the draft (Hogner) and then the beam tend to zero,
as observed Maruo 7) who also derived the result directly.

(3) VSST (Vossers' Slender-Ship Theory). The theory presented by
Vossers in Reference 6, but with some of the errors corrected.

For smooth pointed ships all these theories are in agreement
with themselves, and predict positive-definite wave resistance. For
unpointed (or unsmooth) ships NSST and VSST predict infinite wave-
resistance, while MSST predicts finite wave-resistance which becomig
negative at high and low Froude numbers. Taylor's Standard Series ),
in which the important parameter t (slope of sectional area curve at
its end) is often nonzero, suggests that unpointed ships are important.

Recent studies by Tuck, Joosen and Ciolkowski, to be presented
at this seminar, are all in agreement with the theories mentioned above,
for smooth pointed ships.
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All these theories are based on assumptions which become
false at low speed and at high speed. On the basis of some calcu-
lat:ons by Peter Thomsen and myself it appears that the range of
validity* depends on the ship form and is limited in extent. Addi-
tional calculations indicate thet D/L and the secticnal area curve,
which determine the resistance in these theories, are insufficient.
This 1s in accordance with calculations and measurements in the
literature. Figure 1 compares MSST, Michell's integral and the first
two terms in the expansion of MSST at high Froude number, for a ship
having 4th-power waterlines. This figures should be compared with
Figure 2, (an elaboration of Figurez 1 of Ref. 7) which deals with a
ship having 2nd-power waterlines.

We conclude that these theories, in their present form,
are not of general value for predicting wave resistance. A fuller
discussion will appear in Schiffstechnik.

L, Another Slender-Ship Theory

The trend in recent work has been to emphasize the inade-
quacies of the Michell-Havelock linearized relation between body
shape and singularity distribution. The slender-ship theories
discussed above are not a satisfactory alternative. Instead of the
Havelock-Michell relation it has been proposed that the direct prob-

lem (ship given, find flow) be treated by solving an integral equation

purely numerically, as in Reference 9, and the inverse problem (given
flow, find ship) be solved purely numerically by integrating the
differential equations for streamlines, as in References 10, 11, etc.
Although published work on these problems ignores the wave term in
the potential, improved calculaticns are around the corner. While
this approach has been and will be fruitful it leads to a certain
awkwardness in design problems. All practical design constraints
involve ship form and hence a practical treatment of low-drag design
problems, if carried out using the ideas mentioned above, requires
the solution of the direct or inverse problem at least once and prob-
ably several times. This is feasible but not completely satisfying.

Dr. Lurye of TRG ani I were lead to consider the analogue,
for flow problems, of a slender-body theory under development by us
for some other problems. This slender-ship theory has the following
properties:

*Validity here means a reasonable degree of agreement with experiment
or Michell's integral.

S
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1) The body is replaced by a distribution of
singularities* on the body surface, the
strength of the distribution at each point
on the body being determined by an elementary
formula.

2) Considering each singularity to be a wave
singularity we get a wave pattern and wave-
resistance. The resistance does not depend
merely on the sectional area curve, and the
resistance is not simply proportional tc
(Beam)u.

3) The approximate singularity strength is
asymptotically exact for slender general
ellipsoids in uniform flow, and may be
regarded as the first term in a convergent
iterative solution of the integral equation
for the exact singularity distribution (in
uniform flow).

L) Minimum problems formulated within this
theory involve the body shape directly,
although approximately. While slightly
more complicated than Michell's expression
the resistance in this theory has prospects
of being more accurate.

The same theory (for sources) has already been proposed by
Kochin in 1937(12). Perhaps the relative lack of exploitation of the
underlying principle, in any field, as compared with theories involv-
ing singularities distributed on a line was due to the relative un-
attractiveness of the surface integrals. However today's computer
techniques make the theory attractive. ’

The theory is conveniently obtained as follows, at least
for smooth bodies. Consider the total potential

o(x,y,2) = Ux + ¢(X)Y:z) (4-1)

¥Either sources or normal dipoles.
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for the uniform flow of an infinite fluid past a slender body. As the
slenderness parameter € — o0, the disturbance potential - o, even on
the body. This is known for genersal ellipsoids and can be proved for
a large class of bodies. We shall use this fact to determine approxi-
mately that distribution of normal dipoles on the body surface which
will generate the same disturbance potential exterior to the body as
does the bcdy itself.

Let o (x,y,z) ((%,y,2) on the body surface S) be the exact
dipole density. Consider the function ¥(x,y,z) defined as follows:

Wxysz) = L oplxtyie') s (3) 68 (4-2)
S

where R is the distance from (x,y,z) to the integration point (x',y',z')
and b/bn' is differentiation in the direction of the unit outward nommal
n(x »¥'52')e ¥ is harmonic inside and outside S. From the definition
of ops we have

w,,,(x:}':z) » ¢(x’yyz) (1“’5)

where the + means that (x,y,z) is exterior to S. From Equation (k-2) it
also follows that ¥_(x,y,z) is a potential function regular throughout
the interior of S.

The jump conditions of potential theory when applied to
Equation (4-2) tell us that

o (xy,2) = i= [¥,(x,3,2) - ¥.(x,3,2)]  (xy,2)ons  (bb)
D by
= . o Uke? (x,y,2) on 8 (b=5)
an = an = - ~ n x,y,z on -5

where the equality on the far right of Equation (4-5) comes from Equation
(4-3) and the kinematic condition on @. (x is a unite vector in the
positive x direction.)

Equation (4-5) defines a Neumann boundary value problem for
the determination of ¥_(x,y,z) througaout the interior of S. The prob-
lem can be solved by inspection to give
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¥ (x,y,2) = - Ux inside and on S. (L-6)

Substituting from Equation (4-6) into Equation (L-4) we get

UD(X)Y:Z) = . [Ux + w+(x:Y:z)] = i— [Ux + O(x,y,2z)] (x,y,z) onS

Ly n
(4=7)
Thus far we have used no slender body approximations and

Equation (4-7) is exact. We now introduce the aforementioned result that
even on S @ .+ 0 as the slenderness parameter € — O to obtain

A
o, (x,y,2) = = ux (x,y,2) on 8 (+-8)
D gt

This is the desired slender body approximation to the surface
density of normal dipoles on a body surface., The distribution represents
the body in a uniform flow.,

The body can also be represented by a distribution of sources
over its surface. It can be shown by an elementary application of Green's
theorem that og (x,y,2), the equivalent slender body approximation to the
source density, is given by

Ug (x,y,2) = L uken (x,y,2) on 8 (4-9)
P14

This approximation is equivalent to the foregoing one for the
dipole distribution in the sense that it generates exactly the same
approximate potential outside the body.

In the case of ellipsoids, where the exact potentials are
known, one can verify directly that Equations (4-8) and (4-9) are the
first non-vanishing terms in the expansions, for small slenderness, of
the exact dipole and source densities for ellipsoids.

In order to make a comparison between g, and og (Equation (4-9))
for a practical form we have utilized numerical values of Og for a slightly
modified Series 60 hull. The values of og were obtained from Douglas
Aircraft via D.T.M.B. and were calculated by methods described in Reference
9. The results appear to be quite accurate. They are presented (in Figure
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3) as plots of og and dg as a function of position on & number of
vertical sections of the Series 60 hull. The figures are adapted
from Breslin and Eng (this seminar), who presented only Og.

The figures reveal a considerable discrepancy between gg
and og. In regions where n'+ ¥ is appreciable Og and oé_’ha&e the same
sign, but Og is larger in magnitude. In regions where ne+ x is small,
for instance near the keel and near the waterline amidships, oé is
small. However, if at the same or nearby stations gg is large in
magnitude then, at the nearby regions where W'« ¥ is small Og is
moderately large and of opposite sign to the nearby large values
of n+X. Qualitatively, it appears that large values of B+ X on
a section generate values of og which by themselves would generate
a body having W+ X large over that entire section. Hence in order
to generate a flat spot in that section we need moderate and opposed
values of Oge The compensating values of 0g» described as moderate
in magnitude, can become large if the flat spot is small, as in
Figure 3e, and one can probably find bodies for which the compemsating
values of oy on a flat spot exceed the predominant values on the por-
tion having Aappreciable values of neX. Notice that ag is a rather
better approximation on the average (say over a vertical section)
than it is pointwise. Notice also that very near the bow (Figure 2f),
where the hull resembles a wedge, og and ag are almost identical.

Further comparisons of this type will lead to a better
understanding of the relationship between og and g °

All the singularity strengths mentioned above are those
appropriate to an infinite fluid. This approximation improves with
decreasing Froude number, but no published quantitative estimate of
the associated error, as regards either the representation of the body
or its wave resistance, is known to us. We have begun to study this
problem, and also some of the other problems raised by the thoughts
leading to Equations (4-8) and (4-9).

5. Zero Wave Resistance

The resistance of a volume distribution Og of sources 1is
given (e.g. by Lunde(lB)) as

22 ax

* 2
R, = 162K i{m T + 17| (5-1)

e SN

R
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ACCORDING TO
NUMERICAL SOLUTION
OF EXACT INTEGRAL
' EQUATION
(SMITH-HESS [9])

ACCORDING TO
APPROXIM. THEORY,
eq. (4-9)

FIGURE 3a. SOURCE STRENGTH DISTRIBUTION AT (X/4) = 0.80i
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ACCORDING TO
NUMERICAL SOLUTION
OF EXACT INTEGRAL ! |
l EQUATION

(SMITH-HESS [9]) |

ACCORDING TO
~

| APPROXIM. THEORY,
eq. (4-9) /

FIGURE 3b. SOURCE STRENGTH DISTRIBUTION AT (X/L) = 0.476



-970-

0224

ACCORDING TO
NUMERICAL SOLUTlON\‘I
OF EXACT INTEGRAL

EQUATION
(SMITH-HESS [9)) :

ACCORDING TO \
APPROXIM. THEORY, \ '\

eq. (4-9)

|
\

FIGURE 3c. SOURCE S'RENGTH DISTRIBUTION AT (X/...) = 0.0224
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ACCORDING TO :
NUMERICAL SOLUTION |
OF EXACT INTEGRAL l

| EQUATION
(SMITH-HESS [g])

ACCORDING TO
| APPROXIM. THEORY,
eq. (4-9)

FIGURE 3d. SOURCE STRENGTH DISTRIBUTION AT (X/2) = <0424
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\ ACCORDING TO
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OF EXACT INTEGRAL
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FIGURE 3¢. SOURCE STRENGTH DISTRIBUTION AT (X/#) = - 755
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— x/1

973

0 994

STRENGTHS ACCORDING TO
NUMERICAL SOLUTION OF

INTEGRAL EQUATION

L (SMITH-HESS [3]) AND
E  ACCORDING TO APPROXIN.
®  THEORY, eq.4-9, ARE
3 APPROXIMATELY EQUAL
|
o
¥

FIGURE 3f SOURCE STRENGTH DISTRIBUTION

AT (X/2) = 994, (X/R) = 973




-97k-

vhere

I+3J=[[][o4(xy,2) exp (5-2)

2
{1k 2x + 1K} 221y + K 2%z} axdydz

By suitably concentrating g, the cases of surface, line and point
sources ar2 included, and by introducing linearized relations between
source strengths and body shapes Rv can sometimecs be interpreted as
the approximate wave resistance of some body. It is clear from (5-1)
that R, = O implies I + 1iJ = O p.p. cn 1 < A <o, It is natural to
raise the question of positive definiteness: does I + 1J = O p.p. for
l1<)A<eo imply Og = 0? 1In, simple cases (sources on & line segment,
simple distributions o4 = og l)(x)og(a)(z) on & vertical plane) it is
easily shown that Rw is positive definite. In general it is not, so
that non-zero distributions can have zero wave-resistance.

It s fascinating to wonder why the question of positive
definiteness was not asked and answered many years ago. I Michell
had asked himself this question he could surely have answered it. We
will devote a few lines to some (essentially equivalent) views of the
matter. First, we observe that a function of one variable (I + iJ)
is controlled by a function of more than one variable (os). This
suggests that several functions og may lead to the same I + iJ, (which
implies zero wave resistance by linearity) but does not show how.
Birkoff and Kotik(lu) showed explicitly how the wavemeking due to
sources on a line can be duplicated by another distribution on a line
closer to the free surface. This leads to zero wave resistance if
one of such a pair of distributions is chunged in sign. They also
showed how the heat-conduction equation governs the problem of sources
on & vertical plane, and paid special attention to the case in which
all the sources are brought to the free surface. However, they paid
no attention to positive definiteness or zero wave resistance.

Krein (see Ref. 15) treats thc problem and distinguishes
between the case in which the dipole distribution is required to be
positive (physically-realizable ship in thin-ship theory) and the more
general case. He uses the heat-conduction equation to construct a
large class of vertical-plare distributions, vanishing outside a finite
rectangle, having zero wave-resistance. Krein observes that they must
have some negative ordinates (thin-ship theoiy). Bessho(l5) has
analyzed the problem in almost the same way and raised the stronger
objection that the linearized volume* is always zero. Related but

*For the same subclass, of the class of waveless vertical-plane dis-
tributions, considered by Krein.
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more special results have been reported by Yim(l6), who also addresses
himself to practical problems. Captain Shor has considered the problem
of rendering a given vertical-plane distribution resistanceless by
adding to it a strut-like distribution. The solution of the problem
of characterizing the class of waveless volume distributions (vanishing
outside a finite region) in a useful way has not yet been reported.

The thermal diffusion process in the vertical plane has an
analog in Fourier transform space. Looking at (5-2) let

I+ iJ'o 0" ] 0,(x,0,0) exp {iKokx} dx (5-3)
2

be the differential contribution of o.(x,0,0). If that element is now
parallel-translated in space its contribution becomes

exp {iKok g3t o1 y + Kokez} . f os(x,o,o)exp {iKolx} dx (54+)

If y = O this is the exact manifestation of thermal diffusion.
Allowing y # 0, the possibility of cancellation appears if the trans-
lated distribution is altered to cancel the factor exp {iK AV -1 Yy
+ KX 2}, multiplied by -1 and added to the original distribution.

Consider now the question of practical design, the question of
ships rather then distributions. We recall the points made by Krein
and Bessho, regarding negative linearized ordinates and zero linearized
volume for vertical-plane distributions. We note also that Yim's cancel-
lation procedure involves infinitely deep distributions which must be
truncated in practice. To consider the problem in its general form, and
in Fourier transform space, we note that I + iJ, defined by (5-2), is an
analytic function® of A in the plane s1it** from -1 to +1 (if [[[ |og|
dx dy dz is finite) and hence if I + iJ = O p.p. for 1 < A < o then
I+ 1J =0 and in particular (A = 0) fff o5 = 0. This is o.k. since
it suggests a closed body. However, if we replace G by lh in the
numerator of (5-2) and replace og by op in (5-2) then R, is the wave-
resistance of the distribution of ) of x-directed dipoles. Again,

* This theme was broached in Section 2 above.

a2 iJ is an entire function of A if the distribution is symmetric
port and starboard
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if [[[ |op| dx dy dz is finite we have I + iJ = 0 and (A = 0) [ff op = O.
This is annoying, since for vertical-plane distributions it means that
the linearized volume is zero. According to Landweber and Yih(l7) the
true volume (ignoring free surface) never exceeds the linearized volume
((2x/c) times dipole moment), a result valid for general volume distri-
butinns. We are thus forced to conclude that if we want to improve our
chances of getting bodies we must either accept a positive, but perhaps
small, wave-resistance, or else abandon the condition [ff |o | < = or

{5 loe| < =

6. Simple Ships of Minimum Wave-Resistance

In the course of conducting the research described in Reference

l, Karp and myself, simultaneously and independently, treated the minimum
problem for simple daipole distributions (those described by product func-
tions f(x)g(z)) in the same spirit* as strutlike dipole distributions are
treated in Reference 1. Strutlike dipole distributions are a special
case obtained by taking g(z) = 1, 0 < z < w. Karp and I obtained some
analytical results, including a proof that in the limit of high Froude
number the optimum f(x) is independent of g(z) and equals the optimum
f(x) already found for strutlike dipole distributi-ns.

More recently, TRG's computer group has helped me to treat the
problem numerically. Their computer program is of a different character
from the one described in Reference 1, in that f(x) is now described by
a polynomial

m=N
fx) = —2—— N M ny (61
am= &= =

(where T2m is the Tchebycheff polynomial of the first kind) rather than
by its values at a finite number of points xj. In checking the present
program we made use of strut result?? including those presented in Refer-
ence 1 and those presented by Maruo and Bessho\"/, Figure 4 shows

the minimum wave resistance coefficient vs. Froude Number, as presented

*As indicated above the theorem of Landweber and Yih cannot be applied
directly to flows having a free surface. Therefore, although [[[op = o,
we cannot conclude that there are no bodies having zero wave resistance.
The existence of such bodies was discussed by Prof. Karp in his talk at
this seminar. (Note added August 26, 1963)

*Given g(z) and [[ fg, find f(x).
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in Reference 1, in Reference 4 and as found from TRG's new program.

The new results are in close agreement with Bessho, whereas the

results of Reference 1 begin to deviate at the lower Froude lumbers.
The possibility of such a deviation wus pointed out in Reference 1.

It is due tc the increasingly oscillatory character of the kernel and
the use of only seven points Xy in the numerical work. The new program
allows up to 16 terms in the expansion of f(x), and should give good
results at Froude numbers considerably lower than 4. At £ = .4 we
have the following data:

C, = 1l.1374 (TRG)
1.1384 (Bessho-Maruo)
2h(x).= 2~J(l/1&-xé f(x)
TABIE 1
X .0 .25 .5
RE 1.25648 .86326 .168k46
Bessho-Maruo 1.2563k4 .86307 . 16868

We present also our first results fo. simple ships. We
considered a design Froude number of .4, a draft-length ratio of
005 (for the dipole distribution), and the two vertical sections

gy{z) = 1, o< z<D
and
z‘h
g(z) = 1-(&), o<z<D.,
.0. The

In the course of numerical work we also let D/L = .1, .5, 1
resulting optimum f(x) are presented as graphs of h(x) = Jzi/h)-x #{x ),
in Figure 5. There is & small depcndence of the optimum h(x) on D/u
and on vertical distribution. The valuves of the (minimum) wave-resist-
ance ccefficient

2 =2

L
Copr % Rw/§ pc B,

where 2BID = linearized volume are given in Table 2:
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h(x) = ,|u/4)-x2 . f(x)

h(x)
D/L = |
5
0 | 2 .3 4 5
hix)
D/L= S
Re
0 [ .2 3 4 .9

FIGURE 5a. FOURTH-POWER VERTICAL DISTRIBUTION,
f = 4, VARIOUS D/L
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h(x) = J(174) - x® - #(x)

i hix)
i D/L = CO

0 A 2 3 4 R
X

FIGURE 5b. WALL-SIDED VERTICAL DISTRIBUTION,
t = 4, VARIOUS D/L
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TABLE 2 ;

l_l

D/L g = g (z): Cy g = g,(2): Cy ;

.05 10597 .10867 }

1 .32612 - 35665 :

5 1.1333 1.6357

1.0 1.1954
o0 1.1979

As a matter of interest the calculated values of (Maruo's)
resistance coefficient for the optimum distribution associated with
g,(z), with D/L = .1, .05 have been compared with the data in Maruo's(18)
Figures 5 and 6 respectively, Maruo's models having L/D = 8, 16 respec-
tively, and a 10-th power vertical section. This comparison is conduct=d
in the framework of thin-ship theory, and within the framework of this
theory the comparison is for hulls having the same displacement. The
fact that Maruo's models have larger D/L by a factor 1.25 is favorable
to them, but of course they are not designed for f = .k,

Ry

-4
——fa— = 1l.42 x 10 for D/L = .05
(1/2)pu°L
-4
= 5.39 x 10 for D/L = .1 :
(21 = L). \
These points should be plotted on Figures 6 and 5 respectively of

Maruo's paper at this seminar. |

The ratio of wave-resistance to displacement is given by

B .2
. e c, .

Ry |

pgV

==

Still speaking within thin-ship theory, end using the value C_ = .10867
for D/L = .05 and g = gy(z), and taking (2B/D) = (average full beam/draft) = 2,
and £ = .4 we find

5#; = 4.36 x 107 (1bs/1b) = 8,72 lbs/ton .
PE
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ON THE MINIMUM WAVE RESISTANCE OF SHIPS
WITH INFINITE DRAFT

Masatoshi Bessho

Defence Academy
Yokosuka, Japan



l. Introduction

The minimum problem of the wave resistance of ships has generally
no solution or at least no unique one analytically except special cases.

One of such special cases 1s of ships with infinite draft repre-
sented by draftwise uniform doublet distribution over the vertical center
line plane.(7>

In this case, the existence, the uniqueness and characters of
the solution were given by Professor Karp and others.(7)

They solved the integral equation numerically, and this was an
easy way but difficult to secure a necessary accuracy especially in low
speed where the wave resistance becomes very small,

In the other way, the analytical treatment is not only simple
too but supplies very many interesting knowledges so far as we have com-
plete tables of necessary functions.

In this paper, the author presents such treatment of the problem
with the aid of the text and tables of Mathieu functions which he has been
able to use.(4,5)

2. Wave Resistance Formula

Consider the uniform flow with unit velocity flowing from the
positive direction of x-axis down to the negative and the doublet of which
axis directs to the positive x-axis and distributing draftwise uniformly
over the plane |x| S1.

Then, the wave making resistance of this doublet distribution
is given as follows. Ty

_ n/2
R = pgeBe/n of | F(g sec9)|2 secé do , (2.1)
with
1
F(p) = [ H(x) exp(-ipx) dx , (2.2)
al

where p means the water density, g the gravity constant in this unit
system and |F| the absolute value of F .
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The function BH(x) represents the doublet strength except the
constant multiplier and equals nearly to the breadth of the ship consid-
ered by well-known appro:ximation.

Moreover, B stands for the mean breadth, so that the mean value
of H(x) should be unit, namely,

1
(1/2) [ H(x) dax =1 . (2.3)
-1

Changing the order of integration, the formula (2.1) can be
written as

1
Cw = 8R/(pB°) = 8g° _{ H(x)r(x) dx , (2.4)

with

1
r(x) = -(1/2)_{ H(x')Yo(g|x-x']) dx' , (2.5)

where Yo, 1s the Bessel function of the second species.

Taking the variation with respect to #(x) in this formula
and neglecting higher order terms, we have

OCw = 16g2r(x) [AH(x)Ax] . (2.6)

Namely, the variation of the wave resistance with small deforma-
tion of the water plane area is proportional to the function TI(x) .

For this property, we name it the influence function following
to E. Hogner.(3

Now, taking the class of functions considered by S. Karp and
others, assume the next expansion in series of Mathieu functions, here-
after we follow the notations of McLachlan's text,

H(x) = ¢(6)/sin@ , x = -cosd , (2.7)

and

00

Y ancen(®,q), gq =g/k. (2.8)

n=o

o(9)
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Putting this expancion in (2.5) and (2.4), we have

oo

r(x) = néo unancen(O,Q) ’ (2.9)
and
e 2
Cw = 4ng® ngo T (2.10)

where

H2n = ‘(ﬂ/e)[Agan)/ce2n(ﬂ/2:Q)]2Fby2n(0,Q)/ceen(orQ):

Honsl = -(ﬂ/2)[JaAg2n+l)/ceén+1(ﬂ/2,Q)]2F€y2n+1(0,Q)/ce2n+1(0,q),

(2.11)

because of the orthogonality of functions.(h’e)

The form of the right hand side of (2.10) reduces the problem
to simple calculation.

Some value of p, are shown in Table 1.

3. Minimum Problem I(a)

Firstly, consider the problem to minimize the wave resistance
when the ship length, speed and water plane area are given, or in other
words Froude number (Fr. = lﬁjég) and the mean breadth B are given.

This means to minimize Cw of (2.4) or (2.10) under the condi-
tion (2.3), which is rewritten as follows, putting the expansion (2.7)
and (2.8),

T e, al®m) Lo/, (3.1)

Amm en o

Thence, making use of Lagrange's method, we may have the solu-
tion as

a&2n = 2XA$2n)/N2n = a§n » &2n4l =0, (3.2)
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where A 1s Lagrange's constant and determined by (3.1), that is,
A= l/(nCo’o),ico,o = nZS (Agan))a/ugn (3.3)
Putting these values into (2.10), we have
Cw = 162\ = 16g2/(nCo,o) = Cwo . (3.4)
Moreover, the influence functions (2.9) becomes

00

rx) =2x - 3 APMeen(0,0) =2 = owo/(1667) (3.5)

by the expansion of a constant in Mathieu functions.

Secondly, consider the case when the area and the moment or
center of floatation of the water plane area are given.

This latter condition is given as, say,
ik
(1/4) J i) xax =a, (3.6)

which means that the center of floatation is aft of midship by «a times
of the ship length, and this determines one more relation between the co-
efficients other than (3.1), namely,

k= 2n+l
I aonat®D s/ 37

In the same way as the above, we have easily found the follow-
ing result.

8o+l =8 @ A£2n+l)/ (“01,1“2n+1) =a afp,) » (3.8)
Cw = Cwo + 16 a2Cwl , (3.9)
r(x) = Cwo/(16g°) + a Cwl cose/(2g2) , (3.10)

aop and Cwo are the same as (3.2) and (3.4) and

( 2n+l) )
1

o
2
cwl = 16g2/(n C1,1) , C1,1 = n§o A /uons1 (3.11)
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Thirdly and lastly, let us add to the first problem the con-
dition that the second moment of the area is given arbitrarily.

That is given as

(1/8) le(x) x2 dx = me
-1

(3.12)

me =1/8 + (n/32) °Z° aznAéan)
n=o

Then, we find easily the next solution in the same way as the

above,
82n = agn +7 b3, apny =0,
b;n = 2[Co,o AéEn) = Co,2 Aézn)l/(n A ppp) i
Cw = Cwo + 720w2 ’ (5.1%)
P(x) = Cwo (162) - 2y[Co,2 = Co,0 cos 20)/(x &) (3.15)
where
& =Co,0 02,2 - Cg,e ’
(3.16)
Co,2 = nzo Aéen)Aéen)/“2n ’ C2,2 a ngb (A§2n))2/“2q
7 = 16(mP-nf) , mS =1/8 +C, o/(16C, ;) , (3117)
w2 = 16g°C, o (n A) . - (3.18)
In this place, let us introduce the quantity
5 = 1/H(0) = l/lnuéo apnceon(n/2,q)] , (3.19)

which equals approximately to the usual water plane area coefficient.

In the first problem, this quantity takes the value

5 =8, = nCo’o/(2Do) y Do = n:E‘o A((,en)cegn(n/2,q)/p2n 5 (3.20)
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and in this case, using the above notations,

1/8

1/8 + 27(Cy Dp = Co,2D0)/ (x A),
(3.21)

z Aéen)cean(n/E,q)/uan .
n=o

Do

The quantity m or 9 1is not familiar than &, so that the
solutions in this case are computed for four given values of & using
this relation.

The numerical values of the above appeared quantities are
shown in Table 1 and 2 and Figure 1 to 6, and moreover the expansion
coefficients of the solution in Mathieu functions are converted in the
ones of trigonometrical functions and shown in Table 3.

Namely, write the solution of the first problem

Ho(-ccs®) = @o(®)/sine ,
. (3.22)
@o(e) = E agncegn(o.vQ) ’
n=o
then we may write by the conversion
6) = T al0cos 2m0 , al®) = T ab al2M) ,
9(6) = T afg)cos om0 , alo T e, (3.25)

In the same way, we define the coefficient aéi) as follows,

00
Hy (x) sind = ¢,(0) = n§° 83n4l ®€2ns1 (952)

9, (6) = mz:o efl), cos(aml)e , (3.24)

(1) S » (2n+1)
8omel = & %2n1fomel
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He(x) sin@ = Q)Q(G) = L b;ncegn(g’Q) ’

U]

™3

m/-\
n
g

Q

O

/)]

g

¢, (5) (3.25)

(2) 8 % (on)

4. Minimum Problem I1¢S)

In the preceding paragraph, we do not encounter any theoreti-
cal difficulty, but such groposition ol the problem is somewhat differ-
ent from G. Weinblum's.

As widely known, he had considered the problem when the dis-
tribution vanished at end points and the area coefficient was given.

It was pointed out by S. Karp and others that this {irst con-
dition was not adequate analytically.(7)

Here, we will show that the second condition is not adequate
too in the same meaning.

The second condition says that H(0O) is to be given arbi-
trarily by (3.19).

By Lagrange's method, introducing two constants, we have the
solution

agn = [2k1Ag2n) + Nocean(n/2,9) )/ uzn . (4.1)

Putting this into (2.9), the influence function in this case
becomes

I(x) =21 + X2 n2=lo cepn(n/2,q)cean(0,q) , (k.2)

in which the series of the second term is summed up as the next by in-
cerchanging the order of summation and using the relations between
Fourier coefficients of Mathfeu functions.
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-] o (2n)
L, L, (L) her a2

(2n)

00 00
né; ceen(n/E,q)cezn(O,q) = 2, cos 2s0

rso §

=1/2 + T (-1)"cos 2r6 = (1/2) 1im [sin(2M+1)(©-r/2)/sin(6-r/2)] ,
r=0 N o

(4.3)

This value oscillates the more rapidly as the more N in-
creases, so that we may not find the definite meaning of this problem,
that is this problem is not adequate.

As easily seen, we shall meet the same difficulty as in (4.3)
when we consider the first condition.

Thie propert% of his method may induce an instability of the
solution as he wrote.

5. Properties of the Solution

We will notice here some properties especially in low speed,
because S. Karp and others gave them in high speed.

One of the most interesting is that the value of u; becomes
very much smaller by decreasing its order especially in low speed as we
sez in Table 1.

This means from (2.10) that the lower the order of Mathieu
function is, the smaller the wave resistance.

Hence; the optimum distribution consists almost of the first
three Mathieu functions as we sec¢ in Table 2.

This fact enables next simple asymptotic formulas by making
use of asymptotic ones of Mathieu functions, that is,

Cwo = 6hg2 exp(-2g) , for g>>1, (5.1)
8 = Vn/(2g) , (5.2)
mg = 1/(ke) , (5.3)

Cwl = 6ugh exp(-2g) , (5.4)
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Cw2 l6g6 exp(-2g) , (5.5)

5 = 5c/(1 - yg/4) , (5:16)

These formulas show also more explicitly the above principle
in low speed.

Now, the distributions of the first problem without other re-
striction are shown in Figure 2 and those of the third problem with the
given area coefficient in Figure 3 to 6.

In Figure 7 and 8, G. Weinblum's results are shown compared
with our results, and notwithstanding that they were computed for the
finite draft, they are similar as ours in general but the case when they
have a large swan neck. In these cases, our solution has always a nega-
tive part, and so it has no practical meaning, but it should be remembered
that the area coefficient of the optimum distribution without restriction
is always larger than the value in these cases.

In this meaning, the third solutions corresponding to the
dotted branch of the resistance curves in Figure 1 have no meaning.

6. Wave Profile

The wave profile of the optimum distribution must have some
character different from the ordinary ones.

For this purpose, consider the surface elevation on the x-axis.
It is given as follows in our case.(e)
1
¢(x)/B = -(a/4) { H(x')z[g(x-x")] ax' , (6.1)
with
z(.) = (a/du)[Hg(u) = Yg(u)) , for u>o0 ,
(6.2)
= (d/du)[}{o(u) ' 3Y0(U)] y for u<o,

where H, means Struve's function.

Now we may write (6.2) as

z(u) = [Hi(u) = Y3(u)] + 2Y;(u) , for u>0

(6.3)

[Hi(u) + Y3(u)] + 2Y3(u) , for u<O
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In this right hand side, the function in the parentheses is
even, but Yj(u) odd, and both functions tend infinity at u =0 as
l/u, so that the integral of the even part diverges but the one of the
odd part has a definite value in the sense of Cauchy's principal value
for |x| <1.

Namely, if we assume the distribution symmetric about the
origin, the even part of the surface elevation tends infinity but not
for the odd part. That is, remembering (2.5),

1
-(g/2) [ H(x")Ylg(x-x")] ax

0dd part of [;/E]

-(d/ax) r(x) . (6.4)

Hence, this should vanish in the first problem, because the
influence function is constant by (3.5), and means that the surface
elevation of this optimum distribution should be symmetric about the
midship. Inversely, if the surface elevation be symmetric, then the in-
fluence function should be constant by (6.4), so that the distribution
would be optimum.

In the same way, the odd part of the surface elevation of the
third problem is linear by (3.15) but numerically very small in low
speed.

Thence, these are the very character to distinguish the opti-
mum distribution.

Lastly, we will give the surface elevation far upper and down
stream.

Since we have an asymptotic expansion(l)
Ho(u) = Yo(u) 5 2/(nu), for >>1,

putting this into (6.1), we have approximately
1
;(x)/ﬁ = [l/(2ngx2)] { H(x')dx' = l/(ngxe) , for x> 1, (6.5)

When x 1is negative, the elevation consists of the same sym-
metrical paxt and the free wave part.
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The latter part takes the rext form by (6.1) and (6.2),

1
-g [ H(x')Y;la(x-x")]lax!

te(x) B

-2(d/dx) r(x) , for x< -1, (6.6)

where the influence function takes a different form from the above in
this case when |x| > 1.

Namely, for the even distribution, we have

F(x) = -(x/2) nib ap (A2 Jce, (n/2,0)12 Fey,(u,q) ,

for x = -cosh u , (6-7)8)

Especially, for the first problem in low speed, this equals
nearly to

P(x) = =(x 2)a*[a(®) ce (x 2,a)) Fey,(u,q)

[2exp(-g) Vng|x|] cos(g|x| + n/4) , (6.8)
so that we have, by differentiation,
gf,(x)/ﬁ = = [4 Vg exp(-g)Nx|«|] sin(g|x| + n/b)

or

- 1/2) Vewo/(ng|x|) sin(g|lx| + n/4) , (6.9)

7. Conclusion
Summarizing the above results, we may conclude as follows.

1) The minimum problem of the wave making resistance of the
doublet distribution which is draftwise uniform and tends infinitely
great depth can be solved most easily by making use of Mathieu functions.

1i) The solution of the first problem when the total sum of
the doublet or approximately the water plane area is given, the second
problem when the center of floatation is also given and the third prob-
lem when the second moment of the area is given are solved and shown in
tables and figures.
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111) The third problem is solved instead of the one with
the restriction for the area coefficient, because the proposition of
the problem for this case is not adequate usually.

iv) In low speed, expanding the distribution in Mathieu
functions, the lower its order, the smaller the wave resistance becomes,
so that the optimum one consists almost of the one of the lowest order.

v) The wave profile along the distribution becomes infi-
nitely large, but it should be symmetric about the midship at the
optimum speed in the first problem.

In the last place, the author thanks heartily to Professor
Maruo for his kind suggestions and discussions.
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INTRODUCTION

The problem of finding a ship form which presents the
least resistance under conditions imposed by practical requirements
has been 2 goal of ship designers and ship hydrodynamicists. The
vast efforts at the experimental towing tanks aims at the fulfill-
ment of this gecal. On the other hand, there are attemp“s to handle
the problem from the theoretical point of view, as a consequence of
the development of the fluidmechanics. On accepting Froude's
hypothesis, that the total resistance of a ship is the sum of its
wave resistance and viscous resistance, both components must have
close relations with ship forms. The present state of knowledge
about viscous flow is not yet sufficient to yield a detailed analysis
of the relationship between viscous resistance and the ship form.

On the other hand, & purely analytical discussion is
possible for wave resistance, provided the effect of viscosity
is neglected and linearization of the equations are permissable.
Under these circumstances mathematical methods for minimization of
wave resistance have been tried by various researchers since Weinblum
publicshed his first attempt.™ When the wave resistance is given an
analyticel e:xpression as a functional of the function which gives
the equation for the ship's surface, the problem of minimizing it is
a purely mathematical problem, i.e., the calculus of variations.
There were controversies about the existence of the solution to
minimize Michell‘'s integral under a certain side condition which
was necessary. Von Karman® and Sretenskiid expressed their opinions
of denial of the existence of the solution when a ship of constant
displacement is considered. Wehausenh showed that a solution might
exict if some restriction is imposed on the function. Quite recently
Karp, Kotik and Lurey5 showed that a solution does exist for minimiz-
ing the strut-like dipole distribution of infinite draft. They have
calculated the water line shape of the strut by which the wave
resistance is minimized under the condition of a constant sectional
area, Their acliievement seems to put to end the conflict about<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>